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9 Linear and constant-coe!cient di”erential equations

9.1 Linear di”erential equations and the Wronskian

Here begins the great pivot of MATH 2400! Forget (not actually) everything we have previously
discussed, as the rest of the course focused on di!erential equations rather than linear algebra.

Matrices do not go away, though, and the topics discusses in weeks 9-13 contain di! eq’s with and
without matrices and systems. So, think of it more as: weeks 9-10 are purely di!erential equations,
and weeks 11-13 put everything from weeks 1-10 together.

What is a di”erential equation?

Simply an equation with at least one derivative in it. You’ve definitely encountered simple di!er-
ential equations in other math classes and lower level calculus classes.
The most simple di!erential equation is really: y

→ = ky, where the derivative of y is equivalent to
itself, multiplied by some constant, k.
Some important vocabulary about di!erential equations:

• Independent variable: variable/function that is changed, domain of function, most commonly
t, time, or x, position

• Dependent variable: variable/function that is changed based on the value of the independent
variable, most commonly x or y, position, such that y(x) or x(t) or y(t). In di!erential
equations, we di!erentiate with respect to the dependent variable(s)

• Linear: variables are combined linearly (addition/subtraction, we are not muliplying deriva-
tives together)

• Homogeneous: di!erential equation that is set = 0

• Non-homogeneous: di!erential equation that is NOT set = 0

• Constant coe”cient: equations where the coe”cients of independent/dependent variables are
constants (not functions)

• Non-constant coe”cient: equations where the coe”cients of independent/dependent variables
are not constants (functions, independent variable, etc)

• Complementary/Homogeneous solution: yc (sometimes yh), the solution to a di!erential equa-
tion when it is homogeneous

• Particular solution: yp, the solution associated with the non-homogeneous equation.

– when a di! eq is homogeneous, yp = 0

• General solution: y = yc + yp, the sum of the homogeneous and particular solutions - this is
the “complete” solution to a di! eq

• Particular/specific solution: solved solution with specific constants (used in initial value prob-
lems)

• Initial value problems: di!erential equations with initial conditions that permit solving for
specific constants
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• First order: the highest derivatve in the equation is a first derivative, like y
→ or x→.

• Second order: the highest derivative in the equation is a second derivative, like y” or x”.
These equations don’t need to have a first order derivative as well, but they can

– The same follows for third order, fourth, etc.

• Separable: if a di!erential equation can have its independent and dependent variables sepa-
rated (on di!erent sides of the = sign) purely via algebraic manipulation

• Non-separable: cannot isolate independent and dependent variables with just algebraic ma-
nipulation, requires more methods to solve, rather than simple integration

Solving the most simple di”erential equation

Let’s quickly solve the equation I mentioned earlier, y→ = ky.

y
→ = ky can be rewritten as: dy

dt
= ky

Put like terms together (separate them): 1
y
dy = kdt

Integrate both sides:
∫

1
y
dy =

∫
kdt

This gives us ln(y) = kt+ Ĉ

And solving for y gives us y = Ce
kt where C = e

Ĉ

Recall that the original di!erential equation was y→ = ky, where the derivative of y, a transformation
of y, is equivalent to multiplying y by a constant, k.

Sound familiar? It should.

It’s the same concept as eigenvalues and eigenvectors!

Here, we can say that the eigenvalue is k and the eigenfunction is ekt. We will use this function
a lot in the following sections.

Di”erential operator, D

Before we (temporarily) forget about matrices, the concept of a di!erential operator is important
to discuss. It itself denotes di!erentiation on a function, vector, etc, such that Df = f

→.

It acts as an operator and can be used to represent di!erential equations to replace the concept of
a derivative. It is also a linear transformation. For example: (D + 1)f = f

→ + f

Further, we can represent the most ”simple” di!erential equation, y→ = ky, with the di!erential
operator:

y
→ = ky

y
→ → ky = 0

Dy → ky = 0
(D → kI)y = 0

Quite similar to (A→ ωI)x = 0, right?

Recalling solving this problem earlier, and these equivalencies, it is easy to see that the linear
transformation, D → kI, is the one-dimensional subspace of functions with basis

{
e
kt
}
. Also, k is

an eigenvalue of D with an eigenvector basis of
{
e
kt
}
.

There’s a lot of details about this concept in the 9.1 notes, don’t worry about it too much. It’s
there to show you where it came from, not what you’ll be tested on.
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Initial value problems

As defined in the definitions above, an initial value problem, IVP, is a di!erential equation with
initial conditions that allow to solve for the constants in a solution.

In the context of our handy y
→ = ky example, the general solution is y = Ce

kt.
To get the specific solution and make this an initial value problem, we need to be told an initial
condition about the function, y, which could be something like y(0) = 1.

With this information, we can solve for C:

y = Ce
kt ↑ 1 = Ce

k↑0 ↑ 1 = Ce
0 ↑ 1 = C

The specific solution, is thus: y = e
kt

For a first order di! eq, you need one initial condition. For second order di! eq’s, you need two
initial conditions, and so on.
There is a theorem, theExistence and uniqueness theorem, which states that given a di!erential
equation with necessary initial values, the equation will have a unique solution on any interval that
contains the initial value and the functions are continuous.
Again, this derivation and proving it is not a MATH 2400 concept, but it’s good to know, and with
some subsequent derivations we arrive at...

the Wronskian

The Wronskian is a scalar quantity, calculated as:

W (f1, f2, ..., fn) =

∣∣∣∣∣∣∣∣∣

f1 f2 · · · fn

f
→
1 f

→
2 · · · f

→
n

...
...

. . .
...

f
n↓1
1 f

n↓1
2 · · · f

n↓1
n

∣∣∣∣∣∣∣∣∣

Which basically means that the Wronskian of functions, in this case, {f1, ...fn}, is the determinant
of those functions written columnwise with their derivatives in their column.
Here’s a more specific example:

Wronskian of (t3, 3et)

W (t3, 3et) =

∣∣∣∣
t
3 3et

3t2 3et

∣∣∣∣

= t
3 ↓ 3et → 3et ↓ 3t2

= 3t3et → 9t2et = 3t2et(t→ 3)

Why do we care? Well, the Wronskian tells us a lot about a set of functions, especially in the
context of di!erential equations:

• If W ↔= 0 on some t interval, we know that those functions are linearly independent on
that interval

• If W = 0 on some t interval, we know that those functions are linearly dependent on that
interval
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For MATH 2400, I want to add a few notes on these rules. It is a very common question on quizzes
and finals to ask if functions are linearly independent or not, which means they want you to use
the Wronskian. It is rare, however, for the question to give a specific t interval.
So, I find it beneficial to give more specific guidelines for answering these questions in MATH 2400
to make sure you get full credit.

If you are given a specific interval

(like t : [→2, 2])

• If W = 0 for ANY VALUE of t ↑ linearly
dependent

• If W ↔= 0 for ALL VALUES of t ↑ lin-
early independent

If you are NOT given a specific interval,
assume the interval is t : (→↗,↗)

• If W = 0 for ALL VALUES of t (W ↘ 0)
↑ linearly dependent

• If W ↔= 0 for ANY VALUE of t ↑ linearly
independent

Continuing our discussion of the Wronskian, it doesn’t seem too apparent why we are discussing
this now, where are the di! eq’s?
The Wronskian is a super relevant concept with solutions of di!erential equations because second
order and beyond di! eq’s have more than one unique solution. And, these solutions must be lin-
early independent.
Using the logic above, most questions on quizzes/finals is not just “Are these functions linearly
independent?”, it is more, “Can these functions be solutions to a constant coe”cient linear di!er-
ential equation?”
Which means we have to think a little bit more about what the Wronskian tells us:

W ↔= 0 ↑ linearly independent ↑ CAN be solutions to a higher order di! eq
W = 0 ↑ linearly dependent ↑ CANNOT be solutions to a higher order di! eq

Let’s discuss more on the Wronskian and second order di! eq’s.

First, the standard form of a first order linear di! eq is:

y
→ + p(t)y = F (t)

• Any first order linear di! eq can be expressed in this form. You can always isolate y
→ in this

manner through algebraic manipulation.

• If p(t) is a constant (≃ R), the di! eq has constant coe!cients.

• p(t) has special qualities, as the coe”cient of the second highest derivative in the di! eq (in
this case, y0), whether it is constant or a function. You must get the equation in standard
form (isolate y

→) before you identify p(t).

• If F (t) = 0, the di! eq is homogeneous; if F (t) ↔= 0, the di! eq is non-homogeneous.

• First order di! eq’s always have one unique solution.

• General solution: y = Cy1 (constant of integration times solution)

Now, the standard form of a second order linear di! eq is:
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y
→→ + p(t)y→ + q(t)y = F (t)

• Any second order linear di! eq can be expressed in this form. You can always isolate y
→→ in

this manner through algebraic manipulation.

• If p(t) is a constant (≃ R), the di! eq has constant coe!cients.

• p(t) has special qualities, as the coe”cient of the second highest derivative in the di! eq (in
this case, y→), whether it is constant or a function. You must get the equation in standard
form (isolate y

→→) before you identify p(t).

• If F (t) = 0, the di! eq is homogeneous; if F (t) ↔= 0, the di! eq is non-homogeneous.

• Second order di! eq’s always have two unique solutions.

• General solution: y = c1y1 + c2y2 (constants of integration times each solution)

• We can take the Wronskian of the solutions of the di! eq, which will give us a function or a
constant. We can also take the derivative of the Wronskian, W →.

– Following some derivations (See MATH 2400 course notes 9.1.3 if you are interested, it’s
not too relevant), we arrive at the equation:
W→ = →p(t)W,
which relates W,W

→
, and that important p(t), the coe”cient of y→ in standard form

– Further, if we solve for the solution to this first order di! eq, we get:
W = Ce

∫
p(t),

which is also helpful, and we can see in following problems

The following are two di!erent types of second order di! eq problems you are almost guaranteed
to encounter on a quiz/exam. 9.2 focuses on how to directly solve second order di! eq’s, but these
are slightly di!erent.

Given its two solutions, solve for the original linear homogeneous second order di”er-
ential equation

y1 = t and y2 = e
3t

Step 1: (Optional, unless asked to do) Determine linear independence

Before we get started with the question, we can confirm if these two functions can be solutions to
a second order linear homogeneous equation using the Wronskian:

W (t, e3t) =

∣∣∣∣
t e

3t

1 3e3t

∣∣∣∣

= 3te3t → e
3t = e

3t(3t→ 1)

Remembering our rules from above, while this function does have a zero (t = 1
3), it is not ↘ 0

(ALWAYS = 0)
So, they are linearly independent, and can be solutions to a second order di! eq
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Let’s recall that we are looking to generate a second order, linear, homogeneous di!erential equation,
which takes the form: y” + p(t)y→ + q(t)y = 0.

So, the things we have to find to define the di! eq are p(t) and q(t).

Step 2: Find p(t)

Luckily, we just got a way to relate the Wronskian to p(t), and we already solved for W !

W
→ = →p(t)W

W = e
3t(3t→ 1) ↑ W

→ = 9te3t

Plugging W and W
→ into W

→ = →p(t)W :

9te3t = →p(t)e3t(3t→ 1) ↑ 9t = →p(t)(3t→ 1)

↑ p(t) = ↓9t
3t↓1

And that’s p(t), so our di! eq is now: y”→ 9t
3t↓1y

→ + q(t)y = 0

Step 3: Solve for q(t)

To fully define the equation, we lastly need q(t). Luckily, we have everything else to plug into this
partially solved equation, since we have p(t) and y.
We have y, and thus y→ and y” because they were in the question! They are our solutions, so they
will solve our di!erential equation.

We can either plug in y1 = t or y2 = e
3t. To prove this, we can finish the problem either way.

Normally, you only need to use one.

Solving for q(t) with y1 = t

y = t, y→ = 1, y” = 0

y”→ 9t
3t↓1y

→ + q(t)y = 0

(0)→ 9t
3t↓1(1) + q(t)t = 0

9t
3t↓1 = q(t)t ↑ q(t) = 9

3t↓1

Solving for q(t) with y1 = e
3t

y = e
3t, y→ = 3e3t, y” = 9e3t

y”→ 9t
3t↓1y

→ + q(t)y = 0

(9e3t)→ 9t
3t↓1(3e

3t) + q(t)e3t = 0

e
3t(9→ 27t

3t↓1 + q(t)) = 0

↑ 9→ 27t
3t↓1 + q(t) = 0 ↑ q(t) = 9

3t↓1

No matter which solution we use, we get q(t) = 9
3t↓1 .

Step 4: Form second order di!erential equation

Make sure to follow through with the question, which was to recover the original di! eq.
Putting it all together:

y” + p(t)y→ + q(t)y = 0 ↑ y” + ↓9t
3t↓1y

→ + 9
3t↓1y = 0

Which you could further simplify to: (3t→ 1)y”→ 9ty→ + 9y = 0. Both are correct.

Let’s do the other type of problem, which is unfortunately much worse:

Given a second order di”erential equation and one solution, find the general solution

y1 = e

↔
t is one solution of 4ty” + (2→ 8

⇐
t)y→ + 3y = 0

(gross, square roots, I know, but this was literally on a quiz)
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Step 1: Get di! eq in standard form

Divide by the coe”cient of y”

4ty” + (2→ 8
⇐
t)y→ + 3y = 0 ↑ y” + 1↓4

↔
t

2t y
→ + 3

4ty = 0

Step 2: Identify p(t)

p(t) = 1↓4
↔
t

2t

Step 3: Relate p(t) with W,W
→

Recall: W → = →p(t)W

p(t) = 1↓4
↔
t

2t

W
→ = →1↓4

↔
t

2t W

Step 4: Solve for W
This is a first order separable di!erential equation. We can solve this with algebraic manipulation
and direct integration.

W
→ = →1↓4

↔
t

2t W

dW

dt
= →1↓4

↔
t

2t W

1
W
dW = →1↓4

↔
t

2t dt

∫
1
W
dW =

∫
→1↓4

↔
t

2t dt

NOTE: If you seeing the right hand side of this integral and thinking “I don’t remember how
to integrate that”, this is the time to practice... unfortunately there are often some nasty
integrals in this section of MATH 2400, there was even an inverse tangent integral on a final
one semester. Reviewing integration in these weeks will benefit you a lot, especially if you are
feeling a bit rusty.

lnW = →1
2 ln t+ 4

⇐
t (NOTE: not including +C)

W = e
4
→
t

↔
t

Step 5: Solve for W , again
We can solve for W in a di!erent manner. Remember, it is the determinant of the solutions of the
di! eq with their respective derivatives. We don’t have both solutions, but we do have one.

W (e
↔
t
, y2) =

∣∣∣∣∣
e

↔
t

y2

e

→
t

2
↔
t

y
→
2

∣∣∣∣∣ = e

↔
t
y
→
2 → y2

e

→
t

2
↔
t
= e

↔
t(y→2 → 1

2
↔
t
y2) = W

Step 6: Equate W s
We have two di!erent expressions for W , but we know they are equivalent.

W = e
4
→
t

↔
t
= e

↔
t(y→2 → 1

2
↔
t
y2)

y
→
2 → y2

2
↔
t
= e

3
→
t

↔
t
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This leaves us with a first order di!erential equation. It is not separable, and we cannot solve this
with algebraic manipulation and direct integration...

The integration factor

I wanted to introduce this method directly in this specific example, because the only time

where you need to solve non-separable first order di!erential equations in this class, is going
to be in this exact type of problem.

Remember, a first order di!erential equation is:

y
→ + p(t)y = F (t)

The integration factor is:

µ(t) = e

∫
p(t)dt

(I use µ to denote the integration factor, it doesn’t really matter)
NOTE: This is kind of similar to W = Ce

∫
p(t) from the Wronskian section.

They are not the same.

The integration factor is used to convert a non-separable first order di!erential equation into
an equation that can be directly integrated and separated.

Once a di!erential equation is in standard form (like above), we can multiply the entire equation
by the integration factor, which will simplify the LHS (left hand side) into an easy integrable
expression, because we are doing reverse derivative product rule.
The derivative product rule turns a product into two terms being added together. Here, we
want to go the other way. The integration factor does this.

y
→ + p(t)y = q(t)

Multiply both sides by µ(t) = e

∫
p(t)dt:

e

∫
p(t)

y
→ + e

∫
p(t)

p(t)y = e

∫
p(t)

q(t)

LHS becomes: d

dt
(e

∫
p(t)

y) (ALWAYS the derivative of the product of µ(t) and y) so, equation
is↑ d

dt
(e

∫
p(t)

y) = e

∫
p(t)

q(t)

Don’t believe it? Use the normal product rule on the LHS.

d

dt
(e

∫
p(t)

y) = e

∫
p(t)

y
→ + e

∫
p(t)

p(t)y ↑ This was the original LHS. It’s a cool tool!

This makes the LHS, and also RHS, easily integrable, because fundamental theorem of calculus
∫

d

dt
(e

∫
p(t)

y) =
∫
e

∫
p(t)

q(t)

e

∫
p(t)

y =
∫
e

∫
p(t)

q(t)

Obviously, with actual expressions for p(t) and q(t) this will be fully solvable.
NOTE: The RHS here may contain some complicated integrals. You should review integra-
tion by parts.

After taking a quick integration factor instructions break, let’s finish the problem.
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Step 7: Solve for y2

y
→
2 → y2

2
↔
t
= e

3
→
t

↔
t

This equation is in standard form, so we can begin with the integration factor. Don’t forget to get
into standard form!

p(t) = → 1
2
↔
t

µ(t) = e

∫
p(t)dt = e

↓ 1
2
→
t
dt = e

↓
↔
t

Multiply first order di! eq by µ(t)

e
↓
↔
t
y
→
2 → e

↓
↔
t y2

2
↔
t
= e

↓
↔
t e

3
→
t

↔
t

LHS becomes the derivative of the product of µ(t) and y2; RHS requires algebraic simplification

d

dt
(e↓

↔
t
y2) =

e
2
→
t

↔
t

Integrate both sides

∫
d

dt
(e↓

↔
t
y2) =

∫
e
2
→
t

↔
t

e
↓
↔
t
y2 =

∫
e
2
→
t

↔
t

e
↓
↔
t
y2 = e

2
↔
t (no +C)

Solve for y2

y2 = e
3
↔
t

And there is our second solution to the di!erential equation.

Step 8: Form general solution
Don’t forget that the question asks for the general solution, not y2. Don’t do all of that calculus
perfectly and lose points here.

y = c1y1 + c2y2 = c1e

↔
t + c2e

3
↔
t

We neglected the constants of integration twice in this problem. They are here now, as constants
to y1 and y2.
As you can tell, this type of problem is a lot of work. Practice it! It appears on exams a lot.

Now that we have learned about the world of di!erential equations, we can solve them in di!erent
manners in 9.2.
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