8.2 Singular value decomposition and Principal component analysis

Here’s the truth about SVD/PCA:

e Singular value decomposition, SVD, is a type of matrix manipulation, termed “matrix factor-
ization”, to help identify important aspects of the information contained within the matrix,
typically with data about multiple variables and how they are related to each other.

Principal component analysis, PCA, is a subset of SVD, which is more often referred to
in the context of data science. Other mathematics and engineering courses may explore
the comprehension of this technique. PCA is relevant in these contexts, where it is always
computed by a computer, NOT by hand, like here.

SVD is NOT a major component of MATH 2400. It is rarely tested, highly
unrelated to the other topics in the course, and often skipped by the professor
during a semester.

SVD, and thus PCA, can be really overwhelming and confusing, even for me, to compute by
hand. Use this example and information as a reference, but do not stress yourself out over
this topic. There’s other, more relevant topics to study. Refer to previously texted questions
to see how professors have historically asked questions about SVD, if at all.

Okay, my rant is done. Let’s take a brief dive into SVD.

Singular value decomposition is similar to diagonalization, which we first learned about in 6.1 and
explored more with the concept of eigenvalues, eigenvectors, and D = P~1AP in 6.2. Here, our

equation of interest is:

A=Q3XP'lor A=Q3PT
(P is an orthogonal matrix, and recall from 8.1 that for any orthogonal matrix, P, P~! = PT)

Thinking about it in terms of diagonalization:

Matrix Diagonalization SVD
original m X n matrix A A
MUST be square can be non-square
nxn m X n
contains scalars on diagonal D by
eigenvalues on diagonal | contains singular values on diagonal
nxn m X n
contains eigenvectors P P
eigenvectors of A cigenvectors of AT A
nxn nxn
vectors in NullSp(AT) Q
orthogonal
m X m




Okay, now that we've familiarized ourselves with these matrices (a bit), let’s dive into how to

solve for them.

SOLVING FOR SVD FOR A, m x n, WHEN n < m
If m > n, follow these steps and take the transpose of your original matrix, A”, and use that
in these steps.
IMPORTANT (if m > n): you must then transpose all matrices at the end to get the
“correct” Q, X, P.
If doing this, I recommend renaming this matrix such as B = AT, finding the SVD of B, and
then transposing, to avoid confusion.

Step 1: Calculate AT A
Since n < m, AT A will be a n x n matrix, smaller than the m x m AAT.

Step 2: Calculate singular values of ATA

AT A and AAT will have the same singular values, so in step 1 we choose the smaller matrix, n x n,
to make our lives easier.

Calculating singular values:

1. Calculate eigenvalues of AT A as previously described

2. Take the square root of each eigenvalue. These are the singular values, o. This means singular

values are always nonnegative.

Step 3: Form X
Y} is the same size as A with the singular values along the diagonal. # rows may exceed # o’s. X

will be m x n.

o, 0 0 0
0 oo 0 0
0 0 . 0
*=1o 0 0 o
0 0 0 0]

Step 4: Find P

1. P is comprised of the right singular vectors of A, which are just the eigenvectors of A7 A.
Find them as previously described. These belong to NullSp(AT A) by definition of an eigen-

vector.

2. If there exists o with algebraic multiplicity > 1, ensure that its eigenvectors are orthogonal.
(Recall that while there may be repeated eigenvalues, it will still be diagonal, i.e. no geometric
multiplicity > 1 because AT A is orthogonal)

3. Normalize each eigenvector



4. Place these eigenvectors in the corresponding columns to their singular values in 3. P will be
n Xn.

P= vy vy ... v,

Step 5: Generate first n columns of )
Now to make our final matrix, (), we must find our left singular vectors of A, which consists of
vectors that belong to NullSp(AT).

1. We find the first n columns by computing ¢; = Ap;...q,, = Ap,,.

2. Place these vectors in their corresponding columns in () as they are in P, and make sure to
normalize each vector

Q= ¢ .. ¢

Step 6: Generate last m — n columns of )

The remainder of @ is comprised of orthogonal vectors in NullSp(AT) that are also orthogonal to
the first n vectors

1. Find AT and thus the kernel of AT

2. Make sure that these vectors are orthogonal to each other. If they are not (dot product # 0),
use the Gram-Schmidt process to transform the m —n vectors into a mutually orthogonal
set

3. Make sure these vectors are orthogonal to the first n vectors in @) using the same logic in 2

e NOTE that the m — n column vectors will automatically be orthogonal to the first n
column vectors if Rank(A) =n




The complete singular value decomposition of A is now complete as follows:

op 0 0 0] .
0 o, 0 0
0 0 . 0

A:QZPT: ql ... qn DT qm O O 0 0_ Ul UQ PRI /Un
0 0 0 0]

Recall that from the first step, if you had to transpose the original matrix, A, to make a satisfactory
n < m matrix, you must transpose all individual matrices to make the correct @, 3, P.
That’s the gist of SVD in the context of MATH 2400. Some further notes:

e Principal component analysis is an application of SVD, where you do the same steps, but the
matrices have statistical meaning

e PCA is used to interpret data sets with higher dimensions and finds the fewest linear combi-
nations of data columns to account for variation in observations.

e Here’s more information about PCA (not relevant)

— Given A, m x n, where n >> m:
x Mean: m = %Exj
« Centered data: By,x, = [€1] - - |2, where 2; = x; —m
+ Covariance matrix: S = = BBT
* Variance: product of the diagonal of S
« Total variance: Tr(S)
— Principal components are the left singular vectors of B

— PCA is used in a lot of data science, including in yield curves, image processing, genomic
data, etc.



