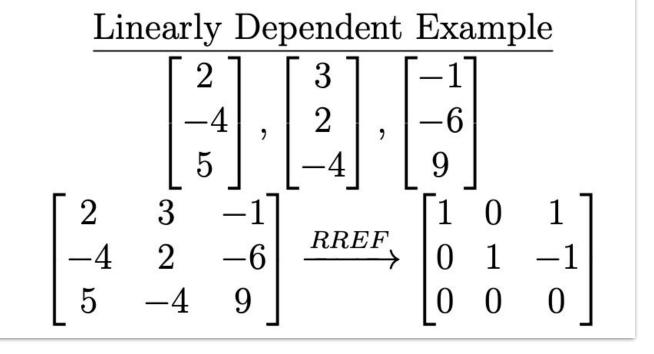
Week 4

Linear independence, basis and dimension

4.1: Span, Linear Independence, and Basis

- Linear combinations (linear dependence)
- Span: how far a vector space can go
- Linear independence (important for bases): set of vectors in V such that none of them can be written as a linear combination of each other except trivial solution
- $\frac{\text{Linearly Independent Example}}{\begin{bmatrix} -3 \\ 2 \\ -3 \end{bmatrix}, \begin{bmatrix} 1 \\ -1 \\ 3 \end{bmatrix}, \begin{bmatrix} -2 \\ 3 \\ -2 \end{bmatrix}} \\
 \begin{bmatrix} -3 & 1 & -2 \\ 2 & -1 & 3 \\ -3 & 3 & -2 \end{bmatrix} \xrightarrow{RREF} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$



- Basis: set of vectors in V iff
 - Vectors are linearly independent
 - Vectors span the vector space
 - Minimally spanning set: remove one vector from set and no longer spans *want this*

4.1: Standard Bases

Every vector space has infinitely many bases, but there are some standard bases to recognize

- Every minimally spanning basis for a vector space has the same number of vectors in the basis
 - A basis CANNOT have linearly dependent components

Some standard bases:

 \mathbb{R}^2 is the space of all vectors in the x,y plane, and its standard basis is $\left\{ \begin{bmatrix} 1\\0 \end{bmatrix}, \begin{bmatrix} 0\\1 \end{bmatrix} \right\}$ \mathbb{R}^3 is the space of all vectors in the x,y,z plane, and its standard basis is $\left\{ \begin{bmatrix} 1\\0\\0 \end{bmatrix}, \begin{bmatrix} 0\\1\\0 \end{bmatrix}, \begin{bmatrix} 0\\0\\1 \end{bmatrix} \right\}$ P_3 is the space of all polynomials (functions) up to the degree of 3. its standard basis is $\left\{ \begin{bmatrix} 1\\0\\0 \end{bmatrix}, \begin{bmatrix} 0\\0\\1 \end{bmatrix} \right\}$ \mathbb{R}^{2x^2} is the space of all 2×2 matrices, and its standard basis is $\left\{ \begin{bmatrix} 1\\0\\0 \end{bmatrix}, \begin{bmatrix} 0\\0\\1 \end{bmatrix}, \begin{bmatrix} 0\\0\\1 \end{bmatrix}, \begin{bmatrix} 0\\0\\1 \end{bmatrix}, \begin{bmatrix} 0\\0\\1 \end{bmatrix} \right\}$

• Dimension: common number of vectors in the vector space

V

- Dim $(P_d) = d+1$
- Dim $(R^n) = n$

4.1.1: Linear independence example

Determine if the following sets of 3×1 vectors are linearly independent:

$$\left\{ \begin{bmatrix} -3\\2\\-3 \end{bmatrix}, \begin{bmatrix} 1\\-1\\3 \end{bmatrix}, \begin{bmatrix} -2\\3\\-2 \end{bmatrix} \right\} \qquad \left\{ \begin{bmatrix} 2\\-4\\5 \end{bmatrix}, \begin{bmatrix} 3\\2\\-4 \end{bmatrix}, \begin{bmatrix} -1\\-6\\9 \end{bmatrix} \right\}$$

4.1 Worksheet questions

- **1**. Review. Let A be an $n \times n$ matrix with det A = 3. What is det(-2A)?
- 2. Review: recognizing vector spaces. Is the following set S a vector space? S = the set of rank one 3×3 matrices together with the zero matrix.
 - **3**. Linear independence and bases. Let V be the space of homogeneous quadratic polynomials in two variables, i.e. polynomials of the form $f(x,y) = ax^2 + bxy + cy^2$.
 - a) Are elements x^2 , xy, y^2 linearly independent?
 - b) What about x^2 , $x^2 + xy + y^2$, $xy + y^2$?
 - c) And x^2 , $x^2 + xy$, $x^2 + xy + y^2$?
 - d) What is the dimension of this vector space V?

4.1 Worksheet questions

- **4**. Subspaces. Let V be the vector space of homogeneous quadratic polynomials in two variables from the previous problem. Consider the subset of V that consists of functions $f \in V$ such that f(1,1)=0. Denote this subset by W is it a vector subspace of V?
 - a) Prove that W either is or is not a vector subspace of V. If W is a subspace, then complete parts b) and c):
 - b) Find a basis of W.
 - c) What is the dimension of W?

4.2: Change of Basis

- There are infinitely many bases for any given vector space, and every basis for a given space has the same dimension and span
- Every vector in a vector space is represented by the coefficients used to generate the vector using its basis elements, traditionally we use the standard basis
- When changing between bases, we can multiply a vector that is currently with respect to one basis by a **change of basis (COB) matrix** to change it to another basis: $P_{S\to B}v_S = v_B$
- Taking the inverse of a COB matrix changes the direction of the change: $P_{S\to B} = (P_{B\to S})^{-1}$
- We can "squish" together COB matrices to move between multiple bases: $P_{S\to B}P_{B\to C}=P_{S\to C}$

4.2: Rank and Nullity

• Row space

- · vector space generated by rows of a matrix (rows in RREF)
- · dimension of the row space: rank

• Column space

- · vector space generated by columns of a matrix (original columns from RREF)
- · dimension of the column space: rank

• Nullspace

- aka kernel
- vector space generated by all vectors such that Ax=0
- solve Ax=0 as described in week 2
- · dimension of nullspace: nullity

4.2: Rank Nullity Theorem

$$Rank(A) + Nullity(A) = n$$

The number of pivot variables in the RREF of a matrix corresponds to the rank of that matrix, and then the number of free variables in the RREF of a matrix corresponds to the nullity of that matrix.

4.2.1: Change of Basis Example 1

Let
$$B = b_1, b_2 = \left\{ \begin{bmatrix} 2 \\ 3 \end{bmatrix}, \begin{bmatrix} 1 \\ -1 \end{bmatrix} \right\}$$
 and $B' = b'_1, b'_2 = \left\{ \begin{bmatrix} 1 \\ 3 \end{bmatrix}, \begin{bmatrix} 1 \\ 4 \end{bmatrix} \right\}$ be two bases for \mathbb{R}^2 , where each is relative to the standard basis $S = s_1, s_2 = \left\{ \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \end{bmatrix} \right\}$. Find $P_{B' \leftarrow B}$.

4.2.2: Change of Basis Example 2

Let $B_1 = \left\{ \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ 2 \end{bmatrix} \right\}$ and $B_2 = \left\{ \begin{bmatrix} 2 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \end{bmatrix} \right\}$ be two bases for \mathbb{R}^2 . You are told the matrix representation of a linear transformation $T: \mathbb{R}^2 \to \mathbb{R}^2$ with respect to the basis B_1 on the source and B_2 on the target, is given by $B_2M_{B_1} = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$. What is $C_2M_{C_1}$, where $C_1 = \left\{ \begin{bmatrix} 1 \\ 2 \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \end{bmatrix} \right\}$ and $C_2 = \left\{ \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 2 \\ 1 \end{bmatrix} \right\}$?

Suppose B_3 is another basis of \mathbb{R}^2 , where $B_3M_{B_1}=\begin{bmatrix}5&1\\3&1\end{bmatrix}$. What is the change of basis matrix $P_{B_3\leftarrow B_2}$?

4.2.2: Change of Basis Example 3

Let
$$S = \left\{ \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \end{bmatrix} \right\}$$
 be the standard basis of \mathbb{R}^2 and $B = \left\{ \begin{bmatrix} 2 \\ 1 \end{bmatrix}, \begin{bmatrix} 3 \\ 2 \end{bmatrix} \right\}$ be another basis. If $\begin{bmatrix} 5 \\ 0 \end{bmatrix}_S = \begin{bmatrix} a \\ b \end{bmatrix}_B$, what are a and b ?

If $\begin{bmatrix} 5 \\ 0 \end{bmatrix}_R = \begin{bmatrix} c \\ d \end{bmatrix}_S$, what are c and d ?

4.2.3: Rank/Nullity theorem Example

Find the basis for the row space, column space, and nullspace of the following matrix:

$$\begin{bmatrix} 3 & 2 & 1 & 4 & 5 \\ 1 & 3 & 2 & 5 & 6 \\ 2 & 4 & 3 & 7 & 8 \end{bmatrix}$$

4.2 Worksheet questions

- 1. Change of bases. Recall that \mathcal{P}_3 is the vector space of polynomials of degree ≤ 3 . Let \mathcal{W} be the subspace of \mathcal{P}_3 consisting of polynomials that satisfy p(1)=0 and p(-1)=0. One basis of this subspace is $\mathcal{B}_1=\{1-x^2,x-x^3\}$. Another basis is $\mathcal{B}_2=\{1-x-x^2+x^3,2+x-2x^2-x^3\}$
 - (a) What polynomial is denoted $\begin{bmatrix} 2 \\ 3 \end{bmatrix}_{\mathcal{B}_1}$?
 - (b) What polynomial is denoted $\begin{bmatrix} 2 \\ 3 \end{bmatrix}_{\mathcal{B}_2}$?
 - (c) Express the polynomials in the basis \mathcal{B}_2 in terms of the basis \mathcal{B}_1
 - (d) What is the change of basis matrix $P_{\mathcal{B}_2 \leftarrow \mathcal{B}_1}$?
- 2. Rank/nullity theorem. For the following matrices, find the dimensions and bases for the row space, column space and nullspace:

$$A = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}, \quad B = \begin{bmatrix} 2 & 2 & 0 \\ 3 & 1 & 1 \\ 4 & 4 & 1 \\ 1 & 2 & 3 \\ 2 & 0 & 2 \end{bmatrix}.$$