Week 2

Gaussian Elimination, Systems of Equations, Matrix Inverses

2.1: Systems of Equations

- We can represent systems of linear equations as matrices and solve using gaussian elimination
- These equations form an equation of the form Ax = b where A is an mxn matrix, x is a nx1 solution vector, and b comes from the constants in the system
 - Setting b = 0 allows us to solve for the <u>homogeneous</u> system, Ax = 0

solutions of $Ax = b$				
No solution	Inconsistent			
One solution				
Infinitely many solutions	Consistent			

$$2x + 3y = 5 \\
-5x - 4y = 8$$

$$\begin{bmatrix}
2 & 3 \\
-5 & -4
\end{bmatrix}
\begin{bmatrix}
x \\
y
\end{bmatrix} = \begin{bmatrix}
5 \\
8
\end{bmatrix}$$

2.1: Gaussian Elimination

- Gaussian elimination: operations to the rows (or columns) to simplify the system to find its solution
- Echelon form: first entry in each row is a leading 1
- Reduced row echelon form (RREF): leading 1 are the only non-zero entries in their respective columns (what we want)
- **Kernel/nullspace**: set of vectors x such that Ax = 0
- <u>Pivot variable</u>: variables that's column has a leading 1 in RREF
- Free variable: variable whose value is dependent on pivot variables
- Rank: # non-zero rows in RREF, also the # of pivot variables
 - Tells us a LOT about the system if rank = # columns, unique solutions

Types of row operations						
Type 1	Switching two rows					
Type 2	Scaling a row					
Type 3	Adding a scaled row to another row					

2.1.1: RREF Example

[5	10	5	15]
3	12	-9	9
4	-4	12	8

2.1.2: Finding Solution Set Example

Γ1 0	2	3	0	4 0	0
0	0	0	1	5	6
0	0	0	0	0	0
0	0	0	0	0	0

2.1.3 Defined solutions example

Consider the system of linear equations

$$\left\{
 \begin{array}{l}
 x + y + z = b_1 \\
 2x + y + z = b_2 \\
 3x + 2y + 2z = b_3
 \end{array}
\right\}$$

- (a) Are there any conditions on b_1, b_2, b_3 that would result in the system having no solutions? If so, provide such conditions. If not, explain why the system must have at least one solution for any $b = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix}$.
- (b) Are there any conditions on b_1, b_2, b_3 that would result in the system having infinitely many solutions? If so, provide such conditions. If not, explain why the system cannot have infinitely many solutions for any $b = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix}$.
- (c) Are there any conditions on b_1, b_2, b_3 that would result in the system having a *unique* solution? If so, provide such conditions. If not, explain why the system cannot have a unique solution Γ_b

for any
$$b = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix}$$
.

2.1 Worksheet questions

1. In this problem, we will practice block multiplication. Consider the following column vector c and a 3×3 matrix A with columns a_1, a_2, a_3 :

$$c = egin{pmatrix} \lambda \ \mu \
u \end{pmatrix}, \, A = egin{pmatrix} | & | & | \ a_1 & a_2 & a_3 \ | & | & | \end{pmatrix}.$$

a) Write the result of matrix multiplication Ac as a linear combination of the column vectors a_1, a_2, a_3 .

b) What if we write a matrix R as three rows $R = \begin{pmatrix} - & r_1 & - \\ - & r_2 & - \\ - & r_3 & - \end{pmatrix}$ and multiply R by A?

2.1 Worksheet questions

2. Gaussian elimination. Consider the following system of linear equations:

$$2x - y + 2z = -5,$$

$$x - 3y + z = 5,$$

$$x - 2y + z = 2.$$

Let v denote the vector of variables:

$$v = egin{bmatrix} x \ y \ z \end{bmatrix}$$

- a) Find a 3×3 matrix A and a 3-vector b so that the above system can be written as Av = b.
- b) Write the augmented matrix [A | b] and perform Gaussian elimination on it.
- c) What is the rank of A? What is the rank of $[A \mid b]$?
- d) Describe Ker A.
- e) How many solutions does this system have? Why? If it does, find all of them.

2.2: Inverse of a square matrix

- In order to solve our system, Ax = b, we can isolate x by multiplying both sides of the equation by the **inverse**, A^{-1} , such that $x = A^{-1}b$
- Invertible: the inverse of the matrix exists iff (if and only if)
 - It is square (nxn)
 - \circ Rank = n
- $AA^{-1} = A^{-1}A = I$
- Computing the inverse:
 - \circ Augment A with I
 - Row reduce until *A* is the identity
 - \circ *I* is now A^{-1}

- Invertible = nonsingular
- Non-invertible = singular
- $(A^{-1})^{-1} = A$
- $(AB)^{-1} = B^{-1}A^{-1}$
- $(A^T)^{-1} = (A^{-1})^T$

For a 2x2 matrix:

$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \rightarrow A^{-1} = \frac{1}{ad - bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$$

2.2.1: Matrix Inverse Example

$$\begin{bmatrix} 5 & 10 & 5 \\ 3 & 12 & -9 \\ 4 & -4 & 12 \end{bmatrix}$$

2.2 Worksheet questions

1. Let A be a square $n \times n$ matrix, and let B and C be other $n \times n$ matrices such that BA = I = AC. Prove that then B = C.

2. In this problem, we will find the 2×2 matrix A that satisfies the following matrix equalities:

$$A \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 3 \\ 7 \end{bmatrix} \text{ and } A \begin{bmatrix} 1 \\ 2 \end{bmatrix} = \begin{bmatrix} 5 \\ 11 \end{bmatrix}$$

- a) Combine the two given equalities into one: AB = C, where B and C are two 2×2 matrices.
- b) Use the formula from the lecture to compute B^{-1} .
- c) Multiply both sides of AB = C by B^{-1} on the right and perform matrix multiplication to find A.